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ABSTRACT 

It is shown that for every sequence of non-negative integers (Phi I ~ n # 3) 
satisfying the equation ~n_~ l (3 - n)pn= 6 (respectively, -- 0) there exists 
a 6-valent, planar (toroidal, respectively) multi-graph that has precisely pn 
n gonal faces for all n, 1 ~ n # 3. This extends Eberhard's theorem that deals, 
in a similar fashion, with 3-valent, 3-cormected planar graphs; the equation 
involved follows from the famous Euler's equation. 

I f  G is a k-valent, connected planar graph possibly with multiple edges and 

loops, and G has precisely p. n-gons for all n _~ 1, then it follows by Euler's 

formula that 

(I) Z (2k + 2n - nk)p .  = 4 k .  

In case k = 3, equation (1) becomes 

(2) X ( 6 - n ) p .  = 12, 

and in case k = 6, we have 

(3) • ( 3 - n ) p .  = 6.  

The corresponding equations for toroidal graphs (that is, graphs which are 

2-cell embedded in the torus) are: 

(4) ]~ ( 6 - n ) p .  = 0,  if  k = 3, and 
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(5) ~ (3 - -n )p  n = O , i f k = 6 .  

Observe that P6 is not involved in equations (2) and (4), while P3 is not involved 

in equations (3) and (5). The sequence (p~ [ n _>_ 1) is called the p-vector of the 

graph G. 

A sequence (P6 I 1 _< n :# 6) of non-negative integers that satisfies equation (2) 

(equation (4))is called 3-realisable (toroidal 3-realizable, respectively) if there 

exists a value for P6 and a 3-valent, connected planar graph (toroidal graph, 

respectively) that has precisely Pn n-gons for all n >__ 1. If Pl = 0, then the graph 

is required to be 2-connected, and if pt=p2 =0 then the graph has to be 3-con- 

nected. 

Eberhard's theorem ([3], see also [4]) states that every sequence 

(Pn ]Pt = P2 -- 0, 1 < n ~ 6) of non-negative integers that satisfies equation (2) 

is 3-realizable. Jendro]" and Jucovi~ [9] proved that a sequence (pn I Pt = P2 = 0, 

1 < n ~ 6) of non-negative integers that satisfies equation (4) is toroidal 3-rea- 

lizable if and only if it differs from the sequence (P5 = P7 -- 1, Pn = 0 for all 

n ~ 5, 6, 7), (See also [5] and [7].) For similar results on 4-realizability, with 

Pl = P2 = 0, see [6] in the planar case and [13] and [1] for the toroidal case. 

Rowland [12] extended Eberhard's theorem concerning planar 3- and 4-reali- 

zabilities in cases where Pt and P2 are not necessarily both equal to zero. 

Recently, Griinbaum and Zaks [8] established the following result which 

settles a conjecture of Brunel (1898-9, [2]) and, independently, of Malkevitch 

(1970, [10]). 

RESULt 1. The sequence (P2 = 3, p, = 0 for all n ~ 2, 6) is the p-vector of 

a 3-valent, planar, 2-connected graph if and only if P6 is of the form 

x 2 + xy + y2 _ 1, where x and y are non-negative integers and (x, y) ~ (0, 0). 

The purpose of this paper is to introduce and study the notion of 6-realizability 

defined as follows: a sequence (p~ [ 1 < n ~ 3) of non-negative integers is called 

6-realizable (toroidal 6-realizable) if there exists a value for P3 and a 6-valent, 

connected planar graph (toroidal graph, respectively) that has precisely p~ n-gons 

for a l l n _ ~ l .  

Another result of Griinbaum and Zaks [8] is the following. 

RESULT 2. The sequence (Pl = 3, p, = 0 for all n ~ 1, 3) is the p-vector of 

a 6-valent, connected planar graph if and only if Pa is of the form 2(x 2 + xy + y2) 

- 1, where x and y are non-negative integers and (x, y) ~ (0,0). 
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We will establish here the following two 6-valent analogues of Eberhard's 

theorem. 

THEOREM 1. Every sequence (Phil _~ n ~ 3) of non-negative integers that 

satisfies equation (3) is 6-realizable. 

THEOREM 2. Every sequence (Pn I 1 ~_ n ~ 3) of non-negative integers that 
satisfies equation (5) is toroidal 6-realizable. 

Our proofs lean heavily on [8] in which the complete structure of 6-valent 

planar graphs G is determined for graphs G which have p-vectors of the form: 

(Pl = 3, pn = 0 for all n # 2, 3). These graphs consists of three k-patches and 

closing triangles, where a k-patch is that part of the 6-valent, planar infinite graph 

H (described in Figure 1) which is included in the k concentric inner circles 

around the monogon; Figure 2 shows a 2-patch, while the part of H shown in 

Figure 1 is actually a 5-patch. 

/ 

Fig. I 

Fig. 2 
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Fig. 3. 

Let G be a graph in the plane (or in the torus) T; the medial graph of G (see 

[11, p. 47]), to be denoted by M(G), is defined as follows: its vertices are interior 

points of the edges of G, one vertex on every edge of G; two vertices of M(G) 
form an edge (of M(G)) if their corresponding edges of G are consecutive edges 

on a face of G. Figure 3 shows a graph G and its medial graph M(G) (heavy 

line). 

Clearly, M(G) is a 4-valent graph and every n-valent vertex of G corresponds 

to an n-gon of M(G). Let S(G) = G U M(G) denote the union of the graph 

M(G) with the subdivision graph of G, obtained from G by adding the vertices 

of M(G). It follows immediately that if G is a connected 6-valent graph in T, 

then S(G) is a connected 6-valent graph in T, and the p-vectors of G and S(G) 
differ only in the number of triangles; an n-gon in G corresponds to an n-gon 

surrounded by triangles in S(G). 
Define Operation 1 of cactii-growing as followst: a monogon inside an n-gon, 

n __> 2, is converted into two monogons, a triangle and an (n + 2)-gon, such 

that one monogon is inside the triangle and the other monogon is inside the 

(n + 2)-gon (so as to allow repetitions of the operation), as shown in Figure 4. 

Fig. 4. 

We need the following lemma. 

t In Israel this is called sabra-growing. 
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LF.~viA. I f  the sequence (p, I 1 ~_ n ~ 3) is 6-realizable in the plane (torus), 

and Pt ~- 1, then every sequence (q, l l  < n ~ 3) of non-negative integers 

satisfying equation (3) (equation (5), respectively) is 6-realizable in the plane 

(torus, respectively), provided 

i. q, = p, for all even n and 

ii. q~ ~_ p, for all odd n, n ~_ 5. 

PROOF, Let G be a 6-valent connected graph in the plane (torus), having the 

p-vector (p, ] n ~_ 1) for some value of ps. The graph Gi,  taken as S(G), has the 

aline p-vector as that of G, except for the number of triangles, and its monogons 

are each inside triangles. Let G 2 be the graph obtained from GI by applying 

Operation 1 to one monogon of Gl-and repeating it k times. G 2 is 6-valent and 

it has p~,+ 1 m-gons for m = 3 + 2k and p, n-gons for all n,  4 < n # m or n = 2.  

This process, when applied for every m for which q,, > Pro, yields a 6-realization 

of the sequence (q. ] 1 <~ n ~ 3), as promised by the Lemma. 

Let Operation j ,  for 2 < j < 6, be the replacement as shown in Figures 5-9. 

/ 

, /  

OPERATION 2 

Fig. 5 

OPERATION 5 

Fig. 6 

A A 

OPERATION 4 

Fig. 7 
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Fig. 8 

Fig. 9 

NOTE. To simplify notation for publication purposes we use 2~ (p, In ~ N) 

instead the usual ~ , ~ u p , ,  where N is a set of natural numbers and p, is an 

integer for every n in N. 

PROOF OF THEOREM 1. Let (p, [ 1 < n :~ 3) be an arbitrary sequence of non- 

negative integers satisfying equation (3), that is, 

2 p I + p 2 = 6 +  ] ~ ( n - 3 ) p , .  
n~_4 

Case 1. P2 = 2k is even, k ~ 0. Let the new sequence (p,'] 1 __6 n # 3) be 

defined by p't = p ~ + k ,  p~ = 0  and p ~ = p ,  for all n > 4 .  We will first 6- 

realize this new sequence, then convert �89 of its monogons into P2 digons plus 

triangles. 

Let G* be a 6-valent, connected planar graph with three monogons and t tri- 

angles, given by the above-mentioned Result 2 of [8], where t is so big as to allow 

all the needed operations in a non-interfering manner. 

A pair of a (6 + 2 n)-gon and a (6 +2m)-gon, together with 3+ n § m monogons 

and triangles is obtained by Operation 2, followed by repeating Operation 1 

on the monogon inside a k-gon, for k ~ 6. If ]~(p,l n even, n 2 6 )  is even, 

all the needed n-gons, for even n, n ~ 6, have been inserted. If 2~ (p, [ n even, 

n > 6) is odd, it fOIR)ws from equation (3), taken modulo 2, that • (p, In even, 

n > 4) is even (remark that P2 is even), hence P4 is odd. Apply Operation 3, fol- 

lowed by Operations 1, to obtain a 4-gon, a (6 +2)-gon, monogon and triangles. 

The remaining even number of 4-gons is obtained by Operations 4. 

The graph G** obtained so far is 6-valent, connected, planar; it has precisely 
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Pn n-gons for all even n, n > 4; it has no n-gons for odd n, n ~ 5; it has triangles, 

at least three monogons (the centers of the three patches of  G*) and it has no 

digons. It follows, using the Lemma, that there exists a 6-valent, connected 

planar graph G*** having precisely pn n-gons for all n, n ___ 4, no digons, Pt + k 

=Pt + �89 monogons and triangles. 

Every monogon of S(S(G***)) is the center of a 1-patch (shown on the left 

side of Figure 8), and these 1-patches are disjoint; Operation 5 is applied in �89 

disjoint parts of S(S(G***)), yielding a 6-realization of (p~ [1 =< n # 3), as pro- 

mised. 

Case II. P2 = 2k + 1 is odd. In this case it follows from equation (3), taken 

modulo 2, that for some even m, m > 4, Pm _~ 1 (since ?E (p~ [ n even, n > 2) 
is always even); let m = 2r. 

: 1  " " Define a new sequence (p 1 < n # 3 )  by Pl = P t + k - r + 2 ,  P 2 = 0 ,  
t t  t t  Pm = P m -  1 and p~ = p~ for all 4 < n ~ m. This sequence satisfies the con- 

dition of the previous Case I, hence there exists a 6-valent, connected planar 

graph G + , which has precisely p,"n-gons for all n, 1 < n # 3. 

Every monogon of S(S(G+)) is the center of a 1-patch, as has been noted; 

apply one Operation 6 to one such monogon of S(S(G+)), and convert the new 

4-gon into an m-gon by �89 consecutive Operations 1; denote the result- 

ing graph by G ++ . Apply, as before, �89 - 1) disjoint Operations 5 on G ++ , 

and we obtain a 6-valent, connected planar graph that has precisely p, n-gons 

for a l l n ,  l < n # 3 .  

This completes the proof of  Theorem 1. 

Let Operation j ,  for 7 < j < 11, be defined as shown in Figures 10-12. 

We are ready for the proof of Theorem 2. 

PROOF OF TUrOREM 2. Let (p, [ 1 < n ~ 3) be an arbitrary sequence of non- 

negative integers satisfying equation (5), that is, 

2Pl + P2 = ~ ( n -  3)pn. 
n~4 

OPERATION 7 ~ 

Fig. 10 
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OPERATION 8 
/ 

~ OPERATION 9 

/x 

Fig. 11 

OPERATION I0 
/ 

~ OPERATION 11 - ~  

r 

Fig. 12 

Let G1 be a 6-valent graph on the torus that triangulates the torus, and such 

that GI is so big as to allow all the needed operations in a non-overlapping manner. 

Case I. P2 is even. We divide the construction into three subcases, as follows. 

i .  (p, ln even, n > 4) ~ I .  Starting with GI, we proceed as in the proof 

of Theorem 1, Case I (where G** is obtained from G*) so as to obtain a 6-valent, 

connected toroidal graph Gz that has precisely p, n-gons for all even n, n ~ 4,  
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that has no digons and no m-gons, for all odd m, m > 5. Unlike G**, G2 need 

not have at least three monogons; however, since E (Pn I n even, n ~ 4) is even, 

it is greater than or equal to two (being at least one). hence it follows from equation 

(5) that G2 has at least one monogon. 

Applying the Lemma and �89 Operations 5 to S(S(G2)) results in a 6-valent, 

connected toroidal graph G3 that has precisely Pn n-gons for all n, 1 ~ n # 3,  

as promised. 

ii. ~(pnlneven,  n ~ 4 ) = 0 a n d  E(pnInodd,  n > 5 ) = > 2 .  Let G4 denote 

the graph, obtained from G1 by one Operation 7. Apply Operations 1 to the two 

monogons inside the 5-gons of G4 so as to obtain a graph G 5 that has an r-gon 

and an s-gon, for odd r and s, r, s > 5 (for which p, + p, > 2, if r # s, or p, > 2 

otherwise). 

An application of the Lemma to G5 results in a 6-valent, connected toroidal 

graph G 6 that has precisely p~ n-gons for all n, n > 4, has no digons, and has 

Pl + �89 monogons, in addition to 3-gons. The desired graph is obtained by 

�89 disjoint Operations 5, performed on S(S(G6)). 

iii. in even, n ~ 4) = 0 and ]~ (p~l n odd, n ~ 5) _~ 1. If p~ = 0 

for all odd n, n ~ 5, then it follows from equation (5) that 2pl + P2 = 0, hence 

in this case p, = 0 for all n, 1 < n ~ 3, and GI is a suitable toroidal 6-reali- 

zation of the zero sequence. 

Otherwise, let m be the only odd n, n > 5 ,  for w h i c h p ~ = l .  I f m  ~ 7 ,  

let (77 be the 6-valent toroidal realization of the sequence (P7 = 1, Pt = 2, Pn -- 0 

for all n # 1, 3, 7) as shown in Figure 13, where the torus is presented in the usual 

way as a rectangle with opposite sides identified in the same directions. 

67 

7 \ 

Fig. 13 

Let Ga be obtained from G 7 by ~(m-7)  Operations 1, and let 139 be the graph 

obtained from S(S(Ga)) by �89 Operations 5; G 9 is the desired toroidal 6-reali- 
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zation of  the given p-vector. In a similar way, for case m = 5, Figure 14 presents 

a toroidal 6-realization G~o of the sequence (P5 = Pt = I, p, = 0 for all n # 1, 3, 5); 

a toroidal 6-realization of  the sequence (Ps = 1, P2 =2,  p, = 0 for all n # 2, 3, 5) 

is obtained from S(S(GIo)) by one Operation 5. 

Fig. 14 

This completes Case I. 

Case II. P2 is odd. It follows from equation (5), taken modulo 2, that for some 

even m, m > 4, p,, ~ 1. If m ~ 6, then let the graph Gll be obtained from Gt 

by Operation 9, followed by ~ m - 6 )  Operations 1 on the monogon inside the 

n-gon, n _~ 6. Using G~,  proceed as in the proof of Theorem 1, Case I. 

If  Pn = 0 for all even n, n ~ 6, then P4 is odd. In case P4 = 1, either the 

sequence is (P4 = P2 = 1, pn = 0 for all n r 2, 3, 4), which is toroidal 6-realized 

(shown in Figure 15, again with the usual identifications), or else for some odd 

r, r >- 5, p, ~ I ; apply Operation 10 to G~ and proceed as in the previous case. 

Fig. 15 

If  P4 ~ 3, apply Operation 11 to GI and proceed as in the previous ease. 

This completes the proof of  Theorem 2. 
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